
PantheonRL:
A MARL Library for Dynamic Training Interactions

Bidipta Sarkar*, Aditi Talati*, Andy Shih*, Dorsa Sadigh
Department of Computer Science

Stanford University
{bidiptas, atalati, andyshih, dorsa}@stanford.edu

Abstract
We present PantheonRL, a multiagent reinforcement learn-
ing software package for dynamic training interactions such
as round-robin, adaptive, and ad-hoc training. Our package is
designed around flexible agent objects that can be easily con-
figured to support different training interactions, and handles
fully general multiagent environments with mixed rewards
and n agents. Built on top of StableBaselines3, our package
works directly with existing powerful deep RL algorithms.
Finally, PantheonRL comes with an intuitive yet functional
web user interface for configuring experiments and launch-
ing multiple asynchronous jobs. Our package can be found at
https://github.com/Stanford-ILIAD/PantheonRL.

Introduction
Multiagent reinforcement learning (MARL) is becoming
increasingly important as more AI systems are being de-
ployed. Many potential applications of MARL involve dy-
namic interactions between agents, such as agents adapting
to each other, ad-hoc coordination, and more (Fig 1). How-
ever, experimenting with these dynamic interactions using
modern deep RL frameworks can be a difficult process. Ex-
isting MARL libraries are largely designed around training a
fix set of agents, making them unsuitable for experimenting
with more dynamic and adaptive agent interactions.

We propose PantheonRL, an easy-to-use and extensible
MARL software package that focuses on dynamic interac-
tions between agents. The goals of our package are:
1. to support adaptive MARL, with dynamic training in-

teractions ranging from self-play, round-robin, adaptive
(few-shot), and ad-hoc (zero-shot) training,

2. to build on top of existing powerful deep RL libraries, in
particular StableBaselines3 (SB3) [5],

3. to provide a web user interface for launching and mon-
itoring experiments, with support for the different dy-
namic training interactions described above.

Related Work
There exists a number of MARL libraries, such as Mava [4],
PyMARL [6], and PettingZoo [7]. The first two offer

*These authors contributed equally.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a selection of centralized multiagent training algorithms
(QMIX, VDN, MADDPG), and PettingZoo hosts a large
collection of multiagent environments. More related to our
work is the combination of PettingZoo with RLLib [3],
which provides some level of customization of agents. How-
ever, to the best of our knowledge, there does not exist a
library designed around flexible agent objects for adaptive
MARL. In contrast to previous work, our package priori-
tizes the modularity of agent objects. Each agent object is
equipped with its own replay buffer and learning algorithm,
allowing users to easily mix and match agents, swap their
roles, and finetune each individually for adaptive MARL.

PantheonRL Framework
One of our desiderata is to build upon powerful single agent
reinforcement learning (SARL) libraries. Our main design
choice is thus: how do we interface with SARL algorithms,
which train a policy network with input/output designated by
the state/action space of an OpenAI Gym [1] environment?
Directly running a SARL algorithm on top of a joint multia-
gent environment (with joint observations and joint actions)
is possible, but this produces a monolithic joint policy net-
work that is undesirable for our first desiderata – to support
adaptive MARL with dynamic training interactions.

Instead, our design is to split the training of each of the
n agents as separate SARL instances, so that we produce
n cleanly distinct policy networks that can be composed or
finetuned for downstream adaptive MARL tasks. We next
describe how we designed the environments and agents in a
way that supports an intuitive API.

Joint / Projected Environments Existing multiagent en-
vironments are generally defined as a joint environment,
with a Gym step function handling n actions and observa-
tions. Each joint environment implicitly defines n projected
environments that are Hidden-Parameter MDPs [2]. The i-th
projected environment handles the i-th agent’s actions and
observations, and has hidden-parameters characterized by
the policies of the other n− 1 agents.

Given a joint environment, we require only specifica-
tion of the state/action spaces of the n projected environ-
ments. PantheonRL then automatically links with SARL al-
gorithms to produce individual agent policies for each agent.



Figure 1: PantheonRL is designed to support dynamic training inter-
actions such as round-robin (left) or cross-play (right).

Figure 2: Agent selection screen of the web user interface. A
demo of this can be found at https://youtu.be/3-Pf3zh Hpo.

Ego / Partner Agents PantheonRL differentiates between
an ego agent and the other n−1 partner agents. Each agent is
equipped with its own replay buffer and learning algorithm.
A critical design feature is that each agent’s learning algo-
rithm can be chosen from off-the-shelf SB3 algorithms, such
as PPO, without any modifications.

We distinguish the ego agent role for two reasons. First,
when doing round-robin training or adaptation, we often
want to fix the ego agent and sample partners from a pool of
possible partners. Second, to provide an intuitive API similar
to that of SB3, we use the ego agent as the entry-point to the
training procedure of all agents. In other words, ego.learn()
will step through the environment, which triggers the learn-
ing algorithm of all the partner agents. The triggers are im-
plemented so that all agents reuse the same joint trajectories,
to avoid naively collecting the joint trajectories n times.

We highlight again the importance of Pantheon’s com-
patibility with SB3 in giving our framework great flexibility.
Each agent can specify its own learning algorithm imported
directly from SB3. Designing our API around the ego agent
also gives us access to many of the single-agent logging, de-
bugging, and monitoring utilities of SB3.

Web User Interface
In addition to full-fledged command-line invocations,
PantheonRL provides an easy-to-use web interface for
launching and monitoring experiments. The web interface
is valuable for prototyping MARL experiments, especially
the dynamic training interactions supported by our package.
This minimizes PantheonRL’s initial user overhead, which
is often non-trivial for other MARL packages.

The website guides the user in selecting the experiment
parameters in stages – first configuring the environment, and
then configuring each individual agent (Fig 2). The parame-
ters are presented as dropdown menus, check boxes, buttons,
and more, which help reduce a user’s mental load during se-
lection. The configurations also allow the user to save/load
agent policies and trajectories for later experiments.

Not only is the website visually intuitive, it is also highly
functional. One of the main features of the website is its
asynchronous design. Built on top of Flask, the website al-
lows a user to launch multiple asynchronous training jobs in
the background. After the training jobs have launched, the
website can either pull lightweight logging information to
display to the user, or spawn a full Tensorboard service in
the background to give the user complete monitoring capa-

bilities. Moreover, the website stores a user’s session infor-
mation in a database, and supports login/logout if the user
wants to manage multiple sessions.

Dynamic Training Interactions
Here, we demonstrate the simplicity of our API when train-
ing dynamic MARL interactions. The examples are on a 2-
player environment, but extends to n-player environments
just as easily. First, we train an ego agent in a round-robin
style by pitting it against two partner agents. Partner 1 is
loaded from a previously trained PPO policy, but we wrap
it as a StaticPolicyAgent so that its policy does not
update anymore. Partner 2 will update its policy using A2C,
and the ego agent will update its policy using PPO.
env = gym.make('OvercookedMultiEnv-v0')

partner_1 = PPO.load(partner_1_file)

env.add_partner_agent(StaticPolicyAgent(partner_1))

partner_2 = A2C('MlpPolicy', env)

env.add_partner_agent(OnPolicyAgent(partner_2))

ego_a = PPO('MlpPolicy', env, verbose=1)

ego_a.learn(total_timesteps=500000)

Next, we will evaluate partner adaptation by loading a
previously trained ego agent, and pairing it with the part-
ner 2 agent we just trained. Since we want the ego agent to
adapt to the partner, we set partner 2 to not update its policy.
env = gym.make('OvercookedMultiEnv-v0')

env.add_partner_agent(StaticPolicyAgent(partner_2))

ego_b = PPO.load(ego_b_file, env=env)

ego_b.learn(total_timesteps=500000)

Other training paradigms like ad-hoc pairing and standard
MARL can be specified even more easily.

PantheonRL provides a concise API while allowing for
great flexibility in customizing training interactions, includ-
ing the pool of partner agents, the toggling of partner up-
dates, and the training algorithm for each individual agent.

Discussion
With focus on adaptive MARL and dynamic training interac-
tions, PantheonRL is a valuable addition to the MARL soft-
ware ecosystem. The modularity of the agent policies com-
bined with the inheritance of StableBaselines3 capabilities
together give users a flexible and powerful library for ex-
perimenting with complex multiagent interactions. To top it
off, our intuitive yet functional web user interface, equipped
with clean visuals and asynchronous job launches, makes
PantheonRL a suitable library for a wide range of users.



Acknowledgments
We would like to acknowledge Office of Naval Research,
and Air Force Office of Scientific Research for their support.

References
[1] Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;

Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
Gym. CoRR, abs/1606.01540.

[2] Doshi-Velez, F.; and Konidaris, G. D. 2016. Hidden Pa-
rameter Markov Decision Processes: A Semiparamet-
ric Regression Approach for Discovering Latent Task
Parametrizations. In Proceedings of the Twenty-Fifth In-
ternational Joint Conference on Artificial Intelligence,
IJCAI 2016.

[3] Liang, E.; Liaw, R.; Nishihara, R.; Moritz, P.; Fox, R.;
Goldberg, K.; Gonzalez, J. E.; Jordan, M. I.; and Stoica,
I. 2018. RLlib: Abstractions for Distributed Reinforce-
ment Learning. In International Conference on Machine
Learning (ICML).

[4] Pretorius, A.; ab Tessera, K.; Smit, A. P.; Eloff, K.;
Formanek, C.; Grimbly, S. J.; Danisa, S.; Francis, L.;
Shock, J.; Kamper, H.; Brink, W.; Engelbrecht, H.; Lat-
erre, A.; and Beguir, K. 2021. Mava: A Research Frame-
work for Distributed Multi-Agent Reinforcement Learn-
ing. arXiv preprint arXiv:2107.01460.

[5] Raffin, A.; Hill, A.; Ernestus, M.; Gleave, A.; Kan-
ervisto, A.; and Dormann, N. 2019. Stable Baselines3.
https://github.com/DLR-RM/stable-baselines3.

[6] Samvelyan, M.; Rashid, T.; de Witt, C. S.; Farquhar,
G.; Nardelli, N.; Rudner, T. G. J.; Hung, C.-M.; Torr, P.
H. S.; Foerster, J.; and Whiteson, S. 2019. The StarCraft
Multi-Agent Challenge. CoRR, abs/1902.04043.

[7] Terry, J. K.; Black, B.; Grammel, N.; Jayakumar, M.;
Hari, A.; Sulivan, R.; Santos, L.; Perez, R.; Horsch,
C.; Dieffendahl, C.; Williams, N. L.; Lokesh, Y.; Sul-
livan, R.; and Ravi, P. 2020. PettingZoo: Gym for
Multi-Agent Reinforcement Learning. arXiv preprint
arXiv:2009.14471.


