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continuous discrete
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[Zhang 2017]
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Sampling — Discrete Settings

 missing out on the big mode

• No information “around” the samples 
• Very high variance 

Cannot easily optimize!

Each circle is a point in discrete space 
Larger circle = high probability mass
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SPN 
(our method)

16x16 Ising Model

*closest to 0 is best

Loopy Belief Propagation

Mean Field

Structured Mean Field

Tree Reweighted Belief Propagation
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Probabilistic Circuits (e.g. Sum Product Networks) 
• Expressive family of distributions! 
• Can compute gradients analytically — no sampling!

Thanks!

andyshih@cs.stanford.edu


