Smoothing Structured Decomposable Circuits

Andy Shih¹ Guy Van den Broeck² Paul Beame³ Antoine Amarilli⁴

¹Stanford University ²University of California, Los Angeles ³University of Washington ⁴LTCI, Télécom Paris, IP Paris

Dec 2019

Probabilistic Circuits

Tractable computation graph, encoding a distribution.

SOTA for:

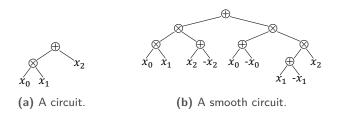
- ► Inference algorithms for PGMs
- Inference algorithms for probabilistic programs
- Discrete density estimation

Check out:

Tractable Probabilistic Models: (UAI19 / AAAI20 tutorial)

Tractability

Different combination of properties leads to different families of circuits


	SPN	AC	PSDD
Decomposability	1	\checkmark	√ (S)
Determinsim	X	\checkmark	\checkmark
Smoothness	1	1	1
Pr(evid)	\checkmark	\checkmark	\checkmark
Marginal	\checkmark	\checkmark	\checkmark
MPE	X	\checkmark	\checkmark
Marginal MAP	X	X	✓*
Expectation	X	X	✓*

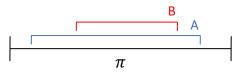
...with different tractability properties.

Smoothness

Definition

A circuit is **smooth** if for every pair of children c_1 and c_2 of a \oplus -gate, $vars_{c_1} = vars_{c_2}$.

Figure: Two equivalent circuits computing $(x_0 \otimes x_1) \oplus x_2$. The left one is not smooth and the right one is smooth.


Smoothing a Circuit: Naive Quadratic Algorithm

- Go to each gate O(m) and fill in each variable O(n)
- ► Complexity *O*(*nm*)
- ▶ Problematic when $n \ge 1,000$ and $m \ge 1,000,000$

Our near-linear smoothing algorithm: $O(m \cdot \alpha(m, n))$

Smoothing a Circuit: Missing Intervals

Key Insight: missing variables for each gate form two intervals (in the inorder traversal of vtree).

Figure: $A \setminus B$ forms two intervals

We need to fill in 2m intervals.

Semigroup Range Sum

Theorem

Given n variables defined over a semigroup and m intervals, the sum of all intervals can be computed using $O(m \cdot \alpha(m, n))$ additions [Chazelle and Rosenberg 1989].

 $\alpha(m,n)$ is the inverse Ackermann function, which grows very slowly.

*The original theorem only bounds the number of additions. We bound the number of total operations.

Takeaways

- Probabilistic circuits can encode complex distributions.
- They can compute exact likelihoods, marginals, and more
 But only if they are smooth.
- Best smoothing algorithm was quadratic.
- We propose a near **linear time** smoothing algorithm.

Poster: East Exhibition Hall B+C #182, 10:45AM

Code: https://github.com/AndyShih12/SSDC

Contact: andyshih@cs.stanford.edu

Smoothing Structured Decomposable Circuits